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Abstract. Using realistic pseudoHamiltonians and pseudopotentials 10 describe ion-valence 
eledron interactions, we investigate the effecc; of non-locality of ion-electron interactions on the 
bulk plasmon energy in alkali metals. It is found that pseudoHamiltonians and pseudopotentials 
CM lead lo imporimt effects on the optical mass and plasmon ener&+es. 

1. Introduction 

The effect of core electrons on the Mie resonance in metal clusters has recently been 
investigated by several authors. In particular, realistic core potentials have been used in 
calculations of the dipole response of Li clusters within the self-consistent time-dependent 
local-density approximation (TDLDA) [l-31 and within the Hartres-Fock and random-phase 
approximations [4,5]. In these calculations it is found that the plasma resonance is red- 
shifted with respect to the classical formula by core effects, in better agreement with 
experiment. An important core effect is the modification of the effective mass due to 
the non-local components of the core potential [1,3]. The value of the effective mass is, 
however, found to depend on the particular model used for the core potential. In the case 
of Li clusters, where the observed red-shift is particularly large, this effective mass is in the 
range 1.15-1.53 [1,3,4]. Although the upper value 1.53 of the effective mass yields good 
agreement between the calculated 111 and experimental [6] position of the resonance, it 
seems to be in disagreement with the results from band structure calculations, which would 
imply lower values for the effective mass in spherically averaged models, as was pointed 
out in 121. 

With the aim of investigating this point in more detail, we develop in this paper 
a pseudojellium model, which takes into account the non-local realistic core potentials 
available in the literature, and apply it to an electron gas In a homogenous system it is 
possible to study in an analytical way the connections between the non-local components 
of the core potentials, the effective mass of valence electrons and their optical mass, which 
is the key quantity for the determination of the bulk plasmon energy, and hence to perfom 
a thorough comparison between the predictions of jeUium and pseudojellium models where 
different pseudopotentials or pseudoHainiltonians are used. 

The effects that we consider in this paper are the average effects of the electron-ion 
interaction s a c i e n t  to resolve the chemical difference between, say, two isovalent ions 
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belonging to the same group of the periodic table, but insensitive to the details of the 
crystalline geometry and of energy bands. Energy band effects have been heated, for 
example, in the case of alkali metals in [7]. 

The paper is organized as follows. In section 2 we define the pseudojellium model 
and discuss the associated KohnSham description of the ground state and time-dependent 
linear response theory (TDLDA). In section 3 we analyse the prediction of the model for 
the bulk plasmon energy, its connection with the energy-weighted sum rule and the optical 
mass. The dispersion with momentum hansfer of the plasmon energy is briefly considered 
in section 4. Finally, section 5 presents some conclusions. 

2. The pseudojellium model for an electron gas 

2.1. Definition and ground state 

In the following we will define pseudojellium as a gas of N interacting valence electrons in 
an external ionic non-local potential given by the spatial average of an effective ion-electron 
interaction 5 with respect to the ionic coordinate TI: 

The extemal potential 5 will be either the Bachelet, Hamann and Schluter (BHS) 
pseudopotential (81 

with 

or the Bachelet, Ceperley and Chiocchetti (BCC) pseudoHamiltonian [9]: 

The pseudoHamiltonian (4) can be derived from the pseudopotential (3) by imposing 
the condition that the eigenvalues and eigenfunctions of the KohnSham equations for the 
atom coincide in the two cases [9], or can be built directly starting from a full core atom 
calculation [lo]. It has recently been used for studying the static and dynamic properties 
of clusters of alkali metals [1,5]. In this case, the spatial average of ( I )  is made inside a 
sphere of radius R = rsN:'3, where r, is the Wigner-Seitz radius r, = (3/4zpo)'l3 and po 
is the static bulk density. In the bulk limit of (1) we have N / Q  = po,  

The Kohn-Sham equations for the pseudojellium take the form 
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where p ( r )  is the density of the valence electrons and vxc is the usual exchangecorrelation 
lem within the LDA. In the pseudopotential case. the non-local part of the external ionic 
potential acts on the single-particle wavefunction &(T) as an integral kernel: 

whereas in the PseudoHamiltonian case it acts as a differential operator, like the kinetic 
energy operator. A self-consistent solution of these equations has been investigated in [ I  I] 
for the bulk, where q$ = sk'r/&, and for metal clusters in [ 1,3]. In particular, it has 
been found that, in the case of the BCC pseudoHamiltonian, in the bulk the effective mass 

m*(k) = (z)-' 
is constant with k, and is given by 

(7) 

where n(r) and b(r) are the functions entering (4). 
pseudopotential the effective mass is strongly momentum dependent. 

2.2. The TDLDA response theo?y 

In this work we investigate the effects of the non-local component of the pseudopotential 
and pseudoHamiltonian on the dispersion of the bulk plasmon by use of the TDLDA. In this 
approach the timedependent solutions of the system coupled with an external oscillating 
field with which it interacts through a field h(Gfe-i"' + Get'")) are given by 

On the other hand, for the BHS 

where 

In the infinite system, due to hanslational invariance, one has G = 
to solutions of the form 

and (9) gives rise 

p ( r ,  t) = po + Sp(ei(g"-@') + e- i(nr-wf)) (11) 

where Sp is a constant to be determined and po is the static bulk density. The dynamic 
polarizability relative to the excitation operator F = cy ei*'; is given by [ 121 
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where F+(w) is defined by 

6F(t) E drei4"6p(r, f )  = F+eiL + F-e-i"f (13) s 
where @(r, t )  = P(T, t )  - po. Using (11) one then gets 

1 
X(F, G,O)TDWA = - dTeivr&pe-iqr = -nap.  (14) h ' S  1 

We now proceed to write down the explicit expression of the dynamic polarizability. 
Let us define the density-dependent potential V"A(T. p ( r ,  t ) )  of (9): 

Inserting solution (11) in (15), one gets terms linear in 6p( r ,  t) = p ( r ,  t )  - po: 

where po = 3/4ar,3 and VLDA(PO) are the static density and potential, respectively. From 
(16) and (11) one gets 

The TDLDA equations now assume the following form: 

where we have defined 

Equations (18) are now TDLDA equations for a non-interacting (single-particle) gas of 
elechons in a static field VLDA(po)+i) and submitted to a new external field h'(q)(ei(er-mf)+ 
cc) with coupling constant h'(q) given by (19). The dynamic polarizability corresponding 
to these equations is the single-particle response function: 
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The single-particle (-hole) states In) ((i)) and excitation energies E,,,,; are built with the 
solutions of the static Kohn-Sham equations (5). From (14), the result for the TDLDA 
polarizability, and the analogous relation for xo: 

one then gets 

and therefore 

3. Bulk plasmon energy and energy-weighted sum rule 

The energy of the bulk plasmon can be derived by solving the equation 

which gives the poles of x ( q ,  O)TDLDA. In the following we will focus on the q + 0 l i t  
of (24). In this limit one can neglect in (24) the exchange-correlation term with respect to 
the Coulomb term, and consider the limiting case w >> <,,,J in the evaluation of xo(q ,  w) 
since only this part of xo(q,  w )  becomes relevant for the collective solution of (24). as is 
apparent from the graphical solution of (24). From (20), for o >> cm,j one gets 

(25) 
2 

xo(q.  0) ;;i-msp(q) 

where myp is the energy-weighted sum rule 

and Ho is the single-particle Hamiltonian generating the single-particle basis with which 
one builds xo(q ,  w )  and the ground state (0) of (26). From (24), (25) one finally gets 

Equation (27) is a general result valid in the q 4 0 limit. Evaluation of msp in different 
models yields different predictions for the energy of the bulk plasmon. In the usual jellium 
model one has the well known result 

(28) I - -" I 
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which follows immediately from the fact that in the jellium model the only term of HO 
contributing to the commutator (26) is the kinetic energy term. In the pseudojellium model 
the non-local terms of the electron-ion potential give rise, for both pseudopotential and 
pseudoHamiltonian cases, to corrections to the result (28). At first sight these corrections 
might appear surprising since the !me Hamiltonian has no momentum dependence and 
satisfies the energy-weighted sum rule. However, the number of electrons entering in the 
sum rule is in principle the total number (valence plus core) of electrons, and not only 
the number N of valence electrons as in (28). In the pseudojellium model one takes into 
account only the valence electrons, as in the jellium model, but unlike the jellium model the 
core electrons are simulated with an effective valence-electron-ion interaction. Inside the 
ionic core the effective interaction between valence electrons and ions must now incorporate 
a short-range repulsive tem to mimic the orthogonality to the occupied core states, and it 
then cannot be the local Coulomb interaction as in the jellium model. We expect that 
pseudojellium will correctly describe the excitation strength, and then the energy-weighted 
sum rule, in the low-energy region. At energies much higher than the plasmon, there would 
be an additional excitation strength not contained in the pseudojellium model, restoring the 
sum rule result with the !me Hamiltonian. 

As is explicitly shown in the appendix, we get the following expressions for the m: 
sum rule in pseudojellium with the pseudoHamiltonian and pseudopotential, respectively: 

and 

where 

and the j l ( q x )  are spherical Bessel functions. From (27)-(31) one gets for the energy of 
the hulk plasmon, wp, the result 

OP = li““ mopt 

where the inverse optical mass I/mOpt is equal to 1 in the jellium model and given by 

and 

for the pseudoHamiltonian and pseudopotential, respectively. 
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Table 1. Optical masses and buIk plasmon energies (in eV) of dkdi  metals in the pseudojellium 
mdel with pseudopotentials (PP) and pseudoHamiltoniam (PH). Experimental values for Li are 
from [ZZ.W]; for the rest of alkalis see [141. We used r, values of 3.25, 3.93, 4.86. 5.20 and 
5.62 for the &atis from Li to Cs, rerpectively 1131. 

mf; m$ up" 0;" myp 
Li 1.155 1.526 7.48 6.51 6.7 
Na 1.051 1.040 5.90 5.93 5.72 
K 1.017 0.983 4.36 4.44 3.72 
Rb 0.980 0.909 4.01 4.17 3.41 
Cs 1.015 0.872 3.51 3.79 2.99 

From (32H34) one can see how the non-local parts of the pseudoHamiltonians and 
pseudopotentials correct the bulk plasmon energy with respect to the jellium prediction. 
One can also notice that. in the case of the pseudoHamiltonian, I/mOp, coincides with 
l/m* of (8) due to the fact that in this case I,"' is constant. This is not the case for the 
pseudopotential, due to the k-dependence of the effective mass. The connection between 
1,"s and l / m &  passes through the evaluation of the energy-weighted sum rule (26). 

In table 1 we report the predictions of the different models for the optical mass and for 
the bulk plasmon energy of alkali metals together with the experimental results. From the 
table one can see that the predictions of the pseudoHamiltonians and pseudopotentials do 
not coincide, and are particularly different in the case of lithium where non-local effects are 
more important. One way to obtain an improved pseudoHamiltonian, giving bulk plasmon 
properties closer to the predictions of the pseudopotential, would be to impose the same 
local part for both pseudopotential and pseudoHamiltonian while treating the non-local parts 
differently in each case. Table 1 shows that the predicted plasmon energies are systematically 
higher than the experimental values. A simple estimate of core polarization effects can be 
done by taking into account the fact that the dielectric function 6(q, U )  would be shifted to 
~ ( q ,  o)+ A€ by these effects. Using the values of A6 given in [I31 one finds that plasmon 
energies are redshifted by about 1% in Li up to 13% in Cs, thus leaving a large discrepancy 
in Li. On the other hand, it is known [7] that a lowering of calculated plasmon energies in 
the series Na to Cs originates from band structure effects, which are not accounted for in 
the present approach. 

4. The plasmon dispersion coefficient 

In the pseudojellium model it is possible to study in an analytical way the plasmon dispersion 
up to q2 terms. To do that, it is sufficient to take into account the exchange-correlation 
contribution in (24) and at the same time to keep the next term in the expansion (25) of the 
single-particle response function (20): 

where m;' is the cubic energy-weighted sum rule 
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In the case of the pseudoHamiltonian one can easily evaluate m y  (see the appendix) to 
obtain 

The calculation with the pseudopotential is much more involved, and will not be presented 
here. Using (24) and the results (29), (37) one readily gets the plasmon dispersion up to q2 
terms: 

From this result one sees that the optical mass generated by the non-local part of the ionic 
potential significantly affects the plasmon coefficient: 

In contrast, this coefficient is not affected by the core polarizability, at least in the way in 
which this effect was taken into account in the preceding section. 

Table 2. Plasmon dispersion coefficient normalized to lhe RPA value for different W i  metals 
as predicted by the pseudojellium model with pseudoHamiltoonians. Experimental values are 
from [141. 

a l u m  (PHI UJURPA (Jellium) a/uwA (Exp.) 

Li 0.21 0.67 - 
Na 0.53 059 0.62 
K 0.51 0.49 0.30 
Rb 0.60 0.45 0.03 
Cs 0.63 0.40 -0.80 

In table 2 we report the predictions of (39) for OI/~XWA (OIRPA = ikz) together with the 
experimental results of [14]. To perform the derivative of the exchange-correlation potential 
entering (39) we have used the Perdew-Zunger [ 151 correlation potential. The numerical 
values of (Y/LYRPA obtained with this procedure and with mTt = mu are very close to the 
predicrions of the local field theory of Vashishta and Singwi I161. as reported in I141. 

As one can see from table 2, the pseudoHamiltonian prediction for mOpt gives a 
decreasing ratio a/czRpA with respect to the jellium model result for Li and Na, but an 
increasing ratio in the case of K, Rb and Cs; this is in strong disagreement with experiments. 
Nevertheless, this influence of core electrons on the plasmon dispersion coefficient is in 
agreement with the result of 171. From K to Cs core elecuons tend to produce positive 
dispersion, increasing the value of a. We note, however, that the density dependence of the 
dispersion coefficient cannot be explained by local field theory with inclusion of core effects; 
it is due to other effects. Regarding this point, we comment on the two commonly accepted 
viewpoints. The first viewpoint [17-21] assumes that band structure effects are small in 
alkali metals [14], and that the observed dispersion is due to a large q- and o-dependent 
exchange correlation term, which is not included in the LDA. In fact, the LDA approximation 
simply gives the q,  o + 0 limit o f  this term. The second viewpoint assigns the dispersion 
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to band structure effects [7]. When going from Na to Cs, the d band approaches the Fermi 
level and becomes narrower. Since the plasmon energies lie in these interband transitions, 
the d band may be responsible for the observed behaviour. In this work we have not 
considered these two possible effects, and we simply investigated average effects of the 
non-local part of the electron-ion interaction. These latter effects are particularly important 
in Li, whereas the other effects are probably not so important. 

5. Conclusions 

We have used ionic pseudopotentials and pseudoHamiltonians. which replace core electrons 
in atomic calculations, to build a pseudojellium model with the aim of describing static and 
dynamic properties of quantum electron fluids in an external ionic field. As an application, 
we have studied the dispersion of the bulk plasmon in alkali metals. We have stressed the 
role of the optical mass due to non-local components of the ionic potential. The optical mass 
has been obtained by means of the relation of the dynamic polarizability and the energy- 
weighted sum rule in the q + 0 limit. An analytic expression of the energy-weighted sum 
rule in terms of the non-local components of the ionic potential has been found. 

The value of the optical mass depends on the particular model (pseudopotential or 
pseudoHamiltonian) used for the core potential when non-local effects are important and 
the optical mass deviates from the bare mass. As a consequence, we have found that, in the 
case of lithium, the predicted value for the energy of the bulk plasmon varies considerably 
from one model to another. This result seems to be a feature only of infinite systems, 
while in (small) finite-size systems, such as clusters of alkali metals, different models still 
give quite similar predictions for the position of the plasma resonance 131. This is due to 
the fact that, unlike the bulk case, in finite systems the local parts of the pseudopotential 
and pseudoHamiltonian play a crucial role and cancel differences between the two models 
originating from the different non-local components. 
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Appendix A. The energy-weighted sum rule 

In this appendix we evaluate the energy-weighted sum rule (26) in the different models 
discussed in this work. For all these models the Hamiltonian f f ~  entering (26) can be 
written as (see (5)) 
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In the jellium model 5 is a local operator as well as u,,(p(r)), and the only term of HO 
contributing to the commutator in (26) is the kinetic energy term. From the following 
properties: 

p 2 ,  $pn] = (-q2 + 2iq . v) [e-ivri , [v2 , e  ivri I1 = -24’ (A21 

one immediately gets the jellium result (28). 

pseudoHamiltonian (4), defining I = r - TI .  one has 
In the pseudojellium case, we have firstly to perform the spatial average of (1). For the 

(A31 
b(x) 

X2 
r; = h,,,(x) - tV,U(X). v, + iL,- * L,. 

The spatial average of the first term of (A3) gives 

- 
hi,, = pa / d3x hi&) = pa(ht,) (A4) 

where pa = N/Q is the bulk density. For the second term one has (V, = V,) 

- i f i s  Vra(x)V,d3x = -&(u)poVl {a) = /u(x)d’x. 64-51 

Finally, for the third term one has 

and using 

one finally gets 

Gathering all terms we have 
- 
hi = pa[-;((a) + $(b))V? + (hi,)]. (A8) 

The sum rule calculation then proceeds as in the jellium case, giving the result (29). 
In the case of the pseudopotential (3). to calculate the spatial average 

Au(v, T’) = pa d n  AU(T - n, T‘ - T I )  (A9) s - 

one uses 

J d q  q rt)Au(q, d )  (A10) 
1 - TI ,  T t  = - 3 d3 rein.(-n)e-id.(r‘- 

( W 6  
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where Au(p, q') is the Fourier transform of AV(=, d). A straightforward calculation then 
gives 

( A l l )  
- 2'"" 
W Y )  = ;E(% + 1) ~ d q d y f q 2 y " j o ( q y ) I k ( q ~ ~ ) l 2 ~ ~ ( ~ ' )  

2 

where y = T - T'. Using the commutators 

(TI[G(T - T'), ei"']lr') = G(T - #)(ei"' -ei*') 

(Tl[e-ivr, - #), eivr 111~') = =(,. - Tt)(eiv(r+ + 

one finally finds the following conhibution to the energy-weighted sum rule: 

- 2) 

In the 4 -+ 0 limit one then gets 

( ~ 1 4 )  
4k:l "- 

Am:' = -N---4'l z 6  Au(x)jl(k~X)X~dX. 

Adding this contribution to the kinetic energy contribution ( $ N q 2 ) ,  finally one gets the 
result (31). 

We finally note that, in the case of the pseudoHamiltonian for which the effective mass 
is constant, it is possible to evaluate very easily the cubic energy-weighted sum rule: 

( ~ 1 5 )  

in the singleparticle approximation. This sum rule is relevant for the evaluation of the 
plasmon dispersion coefficient. Using results (M) ,  (AS) one gets 
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